Weight Inequalities for Singular Integrals Defined on Spaces of Homogeneous and Nonhomogeneous Type

نویسندگان

  • D. E. EDMUNDS
  • A. MESKHI
چکیده

Optimal sufficient conditions are found in weighted Lorentz spaces for weight functions which provide the boundedness of the Calderón– Zygmund singular integral operator defined on spaces of homogeneous and nonhomogeneous type. 2000 Mathematics Subject Classification: 42B20, 42B25.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Minkowski type and related inequalities for seminormed fuzzy integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

Strongly singular integrals along curves on α-modulation spaces

In this paper, we study the strongly singular integrals [Formula: see text] along homogeneous curves [Formula: see text]. We prove that [Formula: see text] is bounded on the α-modulation spaces, including the inhomogeneous Besov spaces and the classical modulation spaces.

متن کامل

Singular Integrals and Approximate Identities on Spaces of Homogeneous Type1 by Hugo Aimar

In this paper we give conditions for the L2-boundedness of singular integrals and the weak type (1,1) of approximate identities on spaces of homogeneous type. Our main tools are Cotlar's lemma and an extension of a theorem of Z6. Introduction. The behavior of singular integrals and approximate identities as operators on the space of integrable functions, i.e. the weak type (1,1), can be investi...

متن کامل

On Generalizations of Hadamard Inequalities for Fractional Integrals

Fej'{e}r  Hadamard  inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r  Hadamard  inequalities for $k$-fractional integrals. We deduce Fej'{e}r  Hadamard-type  inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.

متن کامل

Weak Type Estimates and Cotlar Inequalities for Calderón-zygmund Operators on Nonhomogeneous Spaces

The classical theory of Calderón–Zygmund operators started with the study of convolution operators on the real line having singular kernels. (A typical example of such an operator is the so called Hilbert transform, defined by Hf(t) = ∫ R f(s) ds t−s .) Later it has developed into a large branch of analysis covering a quite wide class of singular integral operators on abstract measure spaces (s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003